Question	Scheme	Marks
1(a)	If $n = 1$, $\begin{pmatrix} 1 & 0 \\ -1 & 5 \end{pmatrix}^1 = \begin{pmatrix} 1 & 0 \\ -\frac{1}{4}(5^1 - 1) & 5^1 \end{pmatrix}$ so true for $n = 1$	B1
	Assume result true for $n = k$ $ \begin{pmatrix} 1 & 0 \\ -1 & 5 \end{pmatrix}^{k+1} = \begin{pmatrix} 1 & 0 \\ -\frac{1}{4}(5^k - 1) & 5^k \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -1 & 5 \end{pmatrix} \text{ or } \begin{pmatrix} 1 & 0 \\ -1 & 5 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -\frac{1}{4}(5^k - 1) & 5^k \end{pmatrix} $	M1
	$\begin{bmatrix} 1 & 0 \\ -1 & 5 \end{bmatrix}^{k+1} = \begin{bmatrix} 1 & 0 \\ -\frac{1}{4}(5^k - 1) - 5^k & 5 \times 5^k \end{bmatrix} \text{ or } \begin{bmatrix} 1 & 0 \\ -1 - 5 \cdot \frac{1}{4}(5^k - 1) & 5 \times 5^k \end{bmatrix}$	M1 A1
	$= \begin{pmatrix} 1 & 0 \\ -\frac{1}{4}5^k + \frac{1}{4} - 5^k & 5^{k+1} \end{pmatrix} \text{ or } \begin{pmatrix} 1 & 0 \\ -1 - \frac{1}{4}5^{k+1} + \frac{5}{4} & 5^{k+1} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -\frac{1}{4}(5^{k+1} - 1) & 5^{k+1} \end{pmatrix}$	A1
	True for $n = k + 1$ if true for $n = k$, (and true for $n = 1$) so true by induction for all $n \in \mathbb{Z}^+$	A1cso
		(6)
1(b)	If $n=1$, $\sum_{r=1}^{n} (2r-1)^2 = 1$ and $\frac{1}{3}n(4n^2-1) = 1$, so true for $n=1$.	B1
	Assume result true for $n = k$ so $\sum_{r=1}^{k+1} (2r-1)^2 = \frac{1}{3}k(4k^2-1) + (2(k+1)-1)^2$	M1
	$= \sum_{r=1}^{k+1} (2r-1)^2 = \frac{1}{3} (2k+1) \{ (2k^2 - k) + (3(2k+1)) \}$	M1 A1
	$= \frac{1}{3}(2k+1)\{(2k^2+5k+3)\} \text{ or } \frac{1}{3}(k+1)(4k^2+8k+3) \text{ or }$	
	$\frac{1}{3}((2k+3)(2k^2+3k+1))$	
	$= \frac{1}{3}(k+1)(2k+1)(2k+3) = \frac{1}{3}(k+1)(4(k+1)^2 - 1)$	dA1
	True for $n = k + 1$ if true for $n = k$, (and true for $n = 1$) so true by induction for all $n \in \mathbb{Z}^+$	A1cso
		(6)
		(12 marks)

Question	Scheme	Marks		
2(i)	$u_{n+2} = 6u_{n+1} - 9u_n$, $n \ddot{O} 1$, $u_1 = 6$, $u_2 = 27$; $u_n = 3^n(n+1)$			
	$n=1; u_1=3(2)=6$			
	$n=2; u_2=3^2(2+1)=27$			
	So u_n is true when $n = 1$ and $n = 2$.			
	Assume that $u_k = 3^k (k+1)$ and $u_{k+1} = 3^{k+1} (k+2)$ are true.			
	Then $u_{k+2} = 6u_{k+1} - 9u_k$			
	$= 6(3^{k+1})(k+2) - 9(3^k)(k+1)$	M1A1		
	$= 2(3^{k+2})(k+2) - (3^{k+2})(k+1)$	M1		
	$= (3^{k+2})(2k+4-k-1)$			
	$= (3^{k+2})(k+3)$			
	$= (3^{k+2})(k+2+1)$	A1		
	If the result is true for $n = k$ and $n = k+1$ then it is now true for $n = k+2$.			
	As it is true for $n = 1$ and $n = 2$ then it is true for all $n \in \mathbb{Z}^+$			
2(ii)	$f(n) = 3^{3n-2} + 2^{3n+1}$ is divisible by 19			
	$f(1) = 3^1 + 2^4 = 19$ {which is divisible by 19}.			
	$\{ :: f(n) \text{ is divisible by 19 when } n = 1 \}$			
	{Assume that for $n = k$,			
	$f(k) = 3^{3k-2} + 2^{3k+1}$ is divisible by 19 for $k \in \mathbb{Z}^+$			
	$f(k+1) - f(k) = 3^{3(k+1)-2} + 2^{3(k+1)+1} - (3^{3k-2} + 2^{3k+1})$			
	$f(k+1) - f(k) = 27(3^{3k-2}) + 8(2^{3k+1}) - (3^{3k-2} + 2^{3k+1})$			
	$f(k+1) - f(k) = 26(3^{3k-2}) + 7(2^{3k+1})$			
	$= 7(3^{3k-2} + 2^{3k+1}) + 19(3^{3k-2}) \qquad \mathbf{or} = 26(3^{3k-2} + 2^{3k+1}) - 19(2^{3k+1})$	A1 A1		
	$= 7f(k) + 19(3^{3k-2}) or = 26f(k) - 19(2^{3k+1})$			
	$\therefore f(k+1) = 8f(k) + 19(3^{3k-2}) $ or $f(k+1) = 27f(k) - 19(2^{3k+1})$	dM1		
	$\{ :: f(k+1) = 8f(k) + 19(3^{3k-2}) \text{ is divisible by 19 as both } 8f(k) \text{ and } 19(3^{3k-2}) \text{ are both divisible by 19} \}$			
	If the result is true for $n = k$, then it is now true for $n = k + 1$. As the result has shown to be true for $n = 1$, then the result is true for all $n \in \mathbb{Z}^+$			
		(6)		
		(12 marks)		

Question	Scheme	Marks			
3	$f(n) = 8^n - 2^n \text{ is divisible by 6.}$				
	$f(1) = 8^1 - 2^1 = 6,$	B1			
	Assume that for $n = k$, $f(k) = 8^k - 2^k$ is divisible by 6.				
	$f(k+1) - f(k) = 8^{k+1} - 2^{k+1} - \left(8^k - 2^k\right)$				
	$= 8^{k} (8-1) + 2^{k} (1-2) = 7 \times 8^{k} - 2^{k}$				
	$=6\times 8^k + 8^k - 2^k \left(=6\times 8^k + f(k)\right)$	M1A1			
	$f(k+1) = 6 \times 8^k + 2f(k)$	A1			
	If the result is true for $n = k$, then it is now true for $n = k+1$. As the result has been shown to be true for $n = 1$, then the result is true for all $n \in \mathbb{Z}^+$	Alcso			
		(6marks)			

Question				
4(a)				
	As LHS = RHS, the matrix result is true for $n = 1$.	Check to see that the result is true for $n = 1$.	B1	
	Assume that the matrix equation is true for	n=k,		
	ie. $\begin{pmatrix} 3 & 0 \\ 6 & 1 \end{pmatrix}^k = \begin{pmatrix} 3^k & 0 \\ 3(3^k - 1) & 1 \end{pmatrix}$			
	With $n = k+1$ the matrix equation become	es		
	$\begin{pmatrix} 3 & 0 \\ 6 & 1 \end{pmatrix}^{k+1} = \begin{pmatrix} 3 & 0 \\ 6 & 1 \end{pmatrix}^{k} \begin{pmatrix} 3 & 0 \\ 6 & 1 \end{pmatrix}$			
	$= \begin{pmatrix} 3^n & 0 \\ 3(3^n - 1) & 1 \end{pmatrix} \begin{pmatrix} 3 & 0 \\ 6 & 1 \end{pmatrix}$	$\begin{pmatrix} 3^k & 0 \\ 3(3^k - 1) & 1 \end{pmatrix} \text{by} \begin{pmatrix} 3 & 0 \\ 6 & 1 \end{pmatrix}$	M1	
	or $\begin{pmatrix} 3 & 0 \\ 6 & 1 \end{pmatrix} \begin{pmatrix} 3^n & 0 \\ 3(3^n - 1) & 1 \end{pmatrix}$			
	$= \begin{pmatrix} 3^{k+1} + 0 & 0 + 0 \\ 9(3^k - 1) + 6 & 0 + 1 \end{pmatrix}$ or $= \begin{pmatrix} 3^{k+1} + 0 & 0 + 0 \\ 6 \cdot 3^k + 3(3^k - 1) & 0 + 1 \end{pmatrix}$	Correct unsimplified matrix with no errors seen.	A1	
	$= \begin{pmatrix} 3^{k+1} & 0 \\ 9(3^k) - 3 & 1 \end{pmatrix} = \begin{pmatrix} 3^{k+1} & 0 \\ 3(3(3^k) - 1) & 1 \end{pmatrix}$			
	$= \begin{pmatrix} 3^{k+1} & 0 \\ 3(3^{k+1} - 1) & 1 \end{pmatrix}$ Manipulates so that $k \to k+1$ on at least one term.		dM1	
		Correct result with no errors seen with some working between this and the previous A1	A1	
	If the result is true for $n = k(1)$ then it is			
	now true for $n = k+1$. (2) As the result has shown to be true for $n = 1$,(3)then the result is true for all n .	Correct conclusion with all previous marks earned	A1 cso	
	(4)		(6)	

Question	Scheme	Marks	
4(b)	f(1) = $7^{2-1} + 5 = 7 + 5 = 12$, {which is divisible by 12}. { \therefore f (n) is divisible by 12 when $n = 1$.} Assume that for $n = k$, f(k) = $7^{2k-1} + 5$ is divisible by 12 for	Shows that $f(1) = 12$.	B1
	$k \in \mathbb{Z}^+$. So, $f(k+1) = 7^{2(k+1)-1} + 5$	Correct unsimplified expression for $f(k + 1)$.	B1
	giving, $f(k+1) = 7^{2k+1} + 5$ $\therefore f(k+1) - f(k) = (7^{2k+1} + 5) - (7^{2k-1} + 5)$	Applies $f(k+1) - f(k)$. No simplification is necessary and condone missing brackets.	M1
	$=7^{2k+1}-7^{2k-1}$		
	$=7^{2k-1}(7^2-1)$	Attempting to isolate 7^{2k-1}	M1
	$=48\left(7^{2k-1}\right)$	$48\left(7^{2k-1}\right)$	Alcso
	$f(k+1) = f(k) + 48(7^{2k-1})$, which is divisible by 12 as both $f(k)$ and $48(7^{2k-1})$ are both divisible by 12.(1) If the result is true for $n = k$, (2) then it is now true for $n = k+1$. (3) As the result has shown to be true for $n = 1$, (4) then the result is true for all n . (5).	Correct conclusion with no incorrect work. Don't condone missing brackets.	A1 cso
			(6)
			(12 marks)

Question	Scheme	Marks		
5	$u_{n+1} = 4u_n + 2$, $u_1 = 2$ and $u_n = \frac{2}{3}(4^n - 1)$ $n = 1$; $u_1 = \frac{2}{3}(4^1 - 1) = \frac{2}{3}(3) = 2$ Check that $u_n = 2$ So u_n is true when $n = 1$. yields 2 when		B1	
	Assume that for $n = k$ that, $u_k = \frac{2}{3}(4^k - 1)$ is true for $k \in \mathbb{Z}^+$.			
	Then $u_{k+1} = 4u_k + 2$ $= 4\left(\frac{2}{3}(4^k - 1)\right) + 2$ Substituting $u_k = \frac{2}{3}(4^k - 1)$ $u_{n+1} = 4u_n + 2$ $u_{n+1} = 4u_n + 2$	$u^{k} - 1$) into $u = 4u_{n} + 2$.	M1	
	$= \frac{8}{3} (4)^k - \frac{8}{3} + 2$ An attempt to multiple brackets by	_	M1	
	$= \frac{2}{3} (4)(4)^{k} - \frac{2}{3}$ $= \frac{2}{3} 4^{k+1} - \frac{2}{3}$			
		$(4^{k+1}-1)$	A1	
	Therefore, the general statement, $u_n = \frac{2}{3}(4^n - 1)$ is true when $n = k + 1$. Require 'True when $n = 1$ ', (As u_n is true for $n = 1$,) then u_n is true for all positive integers by mathematical induction $n = k + 1$. Require 'True when $n = k$ ' and 'True for $n = k + 1$ ' then true for	rue when	A1	

Question	Scheme				
6	$f(n) = 2^{2n-1} + 3^{2n-1}$ is divisible by 5.				
	$f(1) = 2^1 + 3^1 = 5,$	B1			
	Assume that for $n = k$,				
	$f(k) = 2^{2k-1} + 3^{2k-1}$ is divisible by 5 for $k \in \mathbb{Z}^+$.				
	$f(k+1) - f(k) = 2^{2(k+1)-1} + 3^{2(k+1)-1} - \left(2^{2k-1} + 3^{2k-1}\right)$	M1A1			
	$=2^{2k+1}+3^{2k+1}-2^{2k-1}-3^{2k-1}$				
	$=2^{2k-1+2}+3^{2k-1+2}-2^{2k-1}-3^{2k-1}$				
	$=4(2^{2k-1})+9(3^{2k-1})-2^{2k-1}-3^{2k-1}$	M1			
	$=3(2^{2k-1})+8(3^{2k-1})$				
	$=3(2^{2k-1})+3(3^{2k-1})+5(3^{2k-1})$				
	$=3f(k)+5\left(3^{2k-1}\right)$				
	$\therefore f(k+1) = 4f(k) + 5(3^{2k-1}) \text{ or }$				
	$4(2^{2k-1}+3^{2k-1})+5(3^{2k-1})$				
		A1			
	If the result is true for $n = k$, then it is now true for $n = k+1$. As the result has shown to be true for $n = 1$, then the result is true for all n .	A1 cso			
		(6 marks)			

$AS \ and \ A \ level \ Further \ Mathematics \ Practice \ Paper - Proof - Mark \ scheme$

	Source paper	Question number	New spec references	Question description	New AOs
1	FP1 2015	6		Proof - induction, Matrices	1.1b, 2.1
2	FP1 2017	9		Proof	1.1b, 2.1
3	FP1 2014	9		Proof	1.1b, 2.1
4	FP1 2011	9		Proof	1.1b, 2.1
5	FP1 2011	9		Proof	1.1b, 2.1
6	FP1 2012	10		Proof	1.1b, 2.1